«««Назад | Оглавление | Каталог библиотеки | Далее»»»
Прочитано: 93% |
Аксиомы постулируются, т.е. отчасти берутся из опыта, а отчасти додумываются и не обсуждаются далее. Но в аксиомах скрыта искомая сущность и именно их надлежит подвергнуть тщательному критическому анализу. В связи с этим правомерны следующие вопросы: совершенство теории (хорошо ли она описывает явления в своей области?); полнота (все ли электрические явления ею охвачены?); необходимость и всеобщность (т.е. всегда и всюду справедлива). На эти вопросы можно ответить отрицательно. Классическая теория несовершенна хотя бы потому, что она не способна описать радиационные поправки и атом водорода. Полна она или нет - неизвестно. Во всяком случае, допустимы иные теоретические версии, с иным спектром следствий, например, немаксвелловская электродинамика (Невесский Н.Е. "Немаксвелловская электродинамика", ВИНИТИ, No 2989-В94).
Необходимость теории и, следовательно, ее всеобщность ниоткуда не следуют, т.е. можно допустить, что существуют условия, при которых она не работает. Итак, современная классическая электродинамика - не безупречна. Она слишком много оставляет неопределенным, т.е. "оставляет простор для чуда".
Это, с одной стороны, не позволяет выработать с ее помощью четкий критерий для разграничения возможного и невозможного, а с другой, - определяет мотив для дальнейшего поиска. Чтобы снять предъявляемые к теории претензии, т.е. довести ее до совершенства, необходимо отвлечься от чистой феноменологии и сделать шаг в сторону постижения сущности. Для этого требуется физическая модель электромагнитного взаимодействия. Но как только ставится задача создания физической модели, сразу же становится явной необходимость пересмотра основополагающих физических представлений. Действительно, в современной теории электрические заряды - точечны, а пространство, их разделяющее, - пусто. На таком фундаменте трудно что-либо строить и его нужно видоизменить. Первый шаг в этом направлении сделан квантовой электродинамикой (КЭД). В ней с электрическими зарядами связана внутренняя деятельность - испускание и поглощение квантов. О форме, составе и структуре заряженных частиц КЭД умалчивает, но деятельность полагает за основу, и это главное. Физическим содержанием наполняется и поле: оно превращается в потоки квантов. Пространство, таким образом, перестает быть пустым, хотя заполняется оно не совсем понятными сущностями.
Реконструкция теоретических представлений, предпринятая КЭД, не кажется, однако, достаточной, ибо неясно, что такое кванты (а, следовательно, и то, как они формируются, испускаются и поглощаются). Квант - понятие абстрактное, он лишен образного представления. Ясно, что кванты, так или иначе, связаны с электромагнитными волнами и, хотя их не удается сопоставить с волновыми дугами, можно все же утверждать, что они есть всплески силового поля и это важно. Электрическое поле вроде бы наполняется собственным содержанием, т.е. превращается в "само по себе поле", но только "вроде бы", так как содержание это - опять относительное, а не безусловное. Кванты - сгустки силового поля и определяются через поведение пробного тела, попадающего в сферу их влияния. Таким образом, шаги, сделанные КЭД, прогрессивны, но не достаточны. Следующим шагом на пути постижения сущности электричества является, как мне кажется, разработка "информационной теории электричества" (ИТЭ). Возможны многочисленные версии ИТЭ в зависимости от принимаемых за основу исходных предпосылок.
Одна из них называемая теорией эфиронного поля (Невесский Н.Е. "Теория эфиронного поля". ВИНИТИ, No 3231-В93), уже вполне оформилась и на ее примере можно пояснить, о чем речь. Информационная теория электричества сразу начинает с того, что предлагает физическую модель и наполняет физическим содержанием понятия "заряд" и "поле". Заряд рассматривается ею как нечто деятельное (в ТЭП внутренняя деятельность заряженных частиц сводится к их пульсациям на комптоновской частоте). Поле представляется в виде вибраций субквантовой среды, распространяющихся со скоростью света.
Это поле физически представляет собой акустические возмущения эфира и выражается через собственные характеристики (т.е. безотносительно к пробному заряду). Вместе с тем при таком определении "поле" перестает быть "силовым", а превращается в поле "информационное". Такое начало требует соответствующего продолжения, ибо необходимо ответить на следующий вопрос: как соотносятся между собой характеристики информационного "самого по себе поля" и "силы", определяемые через поведение пробного заряда? Установление такого соответствия - момент тонкий и неизбежный, являющийся камнем преткновения для всех теорий взаимодействия, основанных на подобных представлениях. Идеи о моделях поля высказывались не раз, разрабатывались корпускулярные, вихревые и вибрационные модели. Но это только первый шаг, второй - определение соответствия между полем и поведением заряда. Математически это делается просто: из функций, описывающих информационное поле, конструируется Лагранжиан и затем с помощью оптимизационного принципа определяются уравнения движения.
«««Назад | Оглавление | Каталог библиотеки | Далее»»»