«««Назад | Оглавление | Каталог библиотеки | Далее»»»
Прочитано: 41% |
8. Статическое торсионное поле имеет конечный радиус действия r0 (рис. 6), на интервале которого интенсивность торсионного поля слабо изменяется (остается почти постоянной). Условно, по аналогии с электромагнетизмом, хотя физика процессов здесь другая, этот интервал го можно назвать ближней зоной. Волновое торсионное излучение не ограничено интервалом r0 и его интенсивность не зависит от расстояния.
9. Средой, через которую распространяются торсионные излучения, является ФВ. Есть основания считать, что по отношению к торсионным волнам ФВ ведет себя как голографическая среда. В этой среде торсионные волны распространяются через фазовый портрет этой голограммы. Этот основополагающий физический фактор объясняет информационный (не энергетический) характер передачи сигналов, а также их сверхсветовую скорость распространения.
10. Для торсионных полей потенциал тождественно равен нулю, что соответствует их неэнергетическому характеру. Это второй фактор, определяющий, почему торсионные сигналы (воздействия) передаются информационно, а не энергетически, т. е. без переноса энергии.
11. Константа спин-торсионных взаимодействий для статических торсионных полей с кручением Картана по существующим оценкам меньше, чем 10 (-50), т. е. для таких полей невозможно существование наблюдаемых эффектов. Для волновых торсионных полей с кручением Картана (динамическое кручение) константа спин-торсионных взаимодействий теоретически не ограничена. Для торсионных полей с кручением.Риччи или Вайценбека также нет органичений на величину константы взаимодействий, а следовательно и на интенсивность проявления этих полей. Для торсионных полей с кручением, порождаемых как компонента электромагнитных полей (электроторсионные взаимодействия), константа взаимодействий имеет порядок 10(-3) -10(-4).
12. Так как константа электроторсионных взаимодействий (10(-3) -10(-4)) чуть меньше константы электромагнитных взаимодействий (7.3x10(-3)), то в естественных условиях такие торсионные воздействия могут вызвать наблюдаемые изменения или фиксироваться как наблюдаемые сигналы только в тех объектах, в которых есть неравновесные состояния, ослабляющие электромагнитные связи.
13. Торсионные поля проходят через природные среды без ослабления. Это является естественным фактором, если учесть, что квантами торсионных полей являются нейтрино.
14. Скорость торсионных волн теоретически равна бесконечности. Сверхсветовые скорости не являются чем-то необычным для физики. Они присутствовали в теории гравитации Ньютона, они составляют основы концепции тахионов. Без них не было бы теории спонтанного нарушения симметрии Голдстоуна. Сверхсветовые скорости впервые наблюдались экспериментально Н.А. Козыревым [19] (позднее другими учеными [20, 21]), а на квантовом уровне - Цейлингером [ 22]. Без всякой связи с торсионными полями отечественными физиками более десяти лет назад было показано [18], что распространение спиновых возмущений в спиновой среде нельзя экранировать известными нам способами. В этом случае появляется возможность создания подводной и подземной связи, а также связи через любые другие среды.
15. Все тела живой и неживой природы состоят из атомов, большинство которых обладают ненулевыми атомными и/или ядерными классическими спинами, следствием чего является наличие у них ненулевых магнитных моментов. Учитывая, что все тела находятся в магнитном поле Земли, магнитные диполи в этом поле испытывают прецессию, которая порождает волновое торсионное излучение, так как одновременно с прецессией магнитных моментов прецессируют и классические спины. Таким образом, все тела обладают собственными торсионными полями (излучениями).
16. Так как разные тела обладают разным набором химических элементов, разным набором химических соединений с разной стереохимией и разным пространственным распределением в телах этих атомов и химических соединений, то все тела обладают строго индивидуальными, характеристическими торсионными полями.
Для решения задач связи наиболее значимыми из указанных свойств торсионных полей (торсионных волн) являются следующие:
- отсутствие зависимости интенсивности торсионных полей от расстояния, что позволяет избежать больших затрат энергии для компенсации потерь за счет их ослабления в соответствии с законом обратных квадратов, как это имеет место для электромагнитных волн:
- отсутствие поглощения торсионных волн природными средами, что исключает необходимость дополнительных больших затрат энергии для компенсации потерь, характерных для радиосвязи;
- торсионные волны не переносят энергию, они действуют на торсионный приемник только информационно;
- торсионные волны, распространяясь через фазовый портрет голографической структуры ФВ, обеспечивают передачу сигнала от одной точки пространства к другой нелокальным способом. В таких условиях передача может осуществляться только мгновенно со скоростью, равной бесконечности;
- для нелокального способа взаимодействия точек в голографической среде через их фазовый портрет не имеет значения факт поглощения сигнала на прямой линии, связывающей две точки такой среды. Связь, основанная на таком принципе, не нуждается в ретрансляторах.
Таким образом, в первом приближении можно сказать, что передачу информации по торсионному каналу связи можно реализовать на любые расстояния и через любые среды сколь угодно слабыми торсионными сигналами.
Однако в любой реальной системе передачи сообщений необходимо обеспечить передачу требуемого количества информации, которое определяется известным выражением К. Шеннона как функция отношения сигнала к шуму (S/N):
[формула]
Таким образом, для торсионных каналов передачи информации единственными факторами, определяющими интенсивность излучаемого сигнала, являются шумы в торсионном канале и требуемая достоверность передачи информации. Высокая скорость торсионных волн снимает проблему запаздывания сигналов не только на Земле в пределах нашей Галактики, но и в масштабах Вселенной.
Перечисленные выше свойства свидетельствуют о том, что в природе существует носитель, идеальный по своим характеристикам для передачи информации и связи, для телевидения, навигации и локации - это торсионные поля, торсионные волны.
Результаты экспериментальных исследований. Как отмечалось выше, за пределами ближней зоны торсионная волна, образно говоря, "размазывается" по фазовому портрету ФВ (фазовому портрету всей Вселенной). Поскольку эта голограмма охватывает всю Вселенную, то сколь бы интенсивным ни был торсионный сигнал, "размазав" его в объеме Вселенной, получим значение удельной интенсивности излученного торсионного сигнала на единицу этого объема - кванта свободного пространства, исчезающе мало отличающееся от нуля.
Исходя из сказанного, можно предположить, что за пределами ближней зоны невозможна передача информации с помощью торсионных сигналов. Однако если в структуру излучаемого торсионного сигнала ввести спиновый признак некоторой области [формула] голограммы Вселенной, то излучаемый торсионный сигнал за пределами ближней зоны самофокусируется в ее локальной области [формула]. Нелокальному характеру взаимодействия отдельных точек квантовой голограммы ФВ соответствует нелокальный характер передачи торсионного сигнала из одной точки пространства в другую. Для торсионных систем связи роль спинового признака на передаче и на приеме играют специальные спиновые (торсионные) матрицы.
Следствием сказанного выше является очень важное обстоятельство. Торсионный сигнал в явном виде присутствует в малой окрестности торсионного передатчика и в локальной области [формула] торсионного приемника, а между ними. независимо от расстояния, торсионный сигнал ненаблюдаем - он как бы отсутствует. Этим определяется идеальная конфиденциальность передачи информации. Наличие адресной торсионной матрицы позволяет реализовать многоадресный режим работы сети торсионной связи.
Как и любой волновой процесс, торсионные сигналы характеризуются амплитудой, частотой и фазой, и их можно модулировать по амплитуде, частоте и фазе. Принципиально возможны все известные виды модуляции. Любой излучаемый торсионный сигнал несет информацию, которая содержится в несущей и ее модуляции.
Изложенный подход традиционен и в радиосвязи при передаче информации. Он может быть более сложным, когда требуется передача информации в многоадресных системах с произвольным доступом. Одним из вариантов такой системы радиосвязи являются широко известные системы, в которых кроме выбранной несущей, вводится модуляция этой несущей шумоподобными сигналами, которые играют роль адресного признака, а, например, фазовая модуляция этой поднесущей обеспечивает передачу информации.
В торсионных системах связи такой подход в прямом виде принципиально нереализуем. Аналогом когерентности адресных поднесущих в радиосвязи является когерентность спиновых структур адресных матриц в торсионной связи.
Впервые в мире передача двоичных сигналов по торсионному каналу передачи информации была осуществлена в Москве (СССР) в апреле 1986 г. [23]. Этим работам предшествовали успешные эксперименты в 70-е годы. выполненные в Московском НИИ радиосвязи [24].
Богатый опыт развития средств радиосвязи позволял достаточно точно определить круг параметров торсионного канала передачи информации, который был бы исчерпывающим для специалистов. Однако было очевидно, что все эти параметры невозможно определить сразу. Поэтому на первом этапе при экспериментальных исследованиях в реальных условиях была поставлена задача получить ответ на два главных вопроса:
1. Реализуем ли сам факт передачи сигналов по торсионному каналу связи?
2. Подтверждается ли экспериментально высокая проникающая способность торсионных волн?
Исходя из этого была выбрана следующая схема эксперимента (рис. 7). Торсионный передатчик был размещен на первом этаже здания около кольцевой автомобильной дороги г. Москвы, а торсионный приемник находился в центральной части г. Москвы. Расстояние между этими пунктами по прямой составляло 22 км. Торсионные передатчик и приемник не имели устройств, выполнявших функции антенн, вынесение которых. например, на крыши домов, позволило бы обойти здания и рельеф местности. В силу неэлектромагнитной природы торсионных волн эффект отражения по аналогии с отражением коротких волн от ионосферы был исключен. Таким образом, торсионный сигнал от передатчика к приемнику мог распространяться только по прямой через рельеф местности и железобетонные стены всех зданий, находящихся на пути сигнала.
С учетом плотности застройки в Москве препятствия на пути торсионного сигнала, создаваемые зданиями, были эквивалентны железобетонному экрану толщиной более 50 м. В действительности ситуация была еще более сложной. Известно, что для равнин дальность до линии горизонта составляет около 5 км. Поэтому, при дистанции в 20 км по прямой между двумя точками на поверхности Земли, траектория торсионного сигнала проходила около 10 км сквозь толщу влажной земли, что для обычно используемых радиотехнических систем связи практически невозможно.
На передающем конце торсионного канала связи использовался торсионный передатчик конструкции А.А. Деева. В качестве торсионного приемника применялась биоэлектронная система. Ее работа основывалась на свойстве клеток тканей изменять проводимость мембран под действием торсионного поля. Это свойство было в неявном виде установлено В.А. Соколовой в 1982 г. [25], а в 1990 г. и другими исследователями [26]. Возможность дальних дистантных влияний торсионного поля на проводимость тканей вслед за работами В.А. Соколовой, но на другой аппаратурной базе, была подтверждена в начале 1986 г. в работах, выполненных под руководством И.В. Мещерякова [27]. В этих исследованиях впервые в явном виде было экспериментально показано, что при изменении знака торсионного поля [формула] меняется знак электрической проводимости тканей относительно среднего уровня. Это указывало на возможность использования биосистемы для приема двоичных сигналов: одному двоичному сигналу (одному знаку поля) можно поставить в соответствие один уровень проводимости биосистемы, а другому двоичному сигналу (другому знаку поля) - другой уровень проводимости, находящийся на другой стороне относительно уровня, соответствующего проводимости биосистемы в отсутствии торсионного поля.
В первом цикле экспериментальных сеансов связи передача сигналов осуществлялась в адресном режиме на систему из пяти приемников. В месте приема торсионного сигнала на интервале времени ожидания передачи (6 ч) не были известны: время начала передачи, структура передаваемого сигнала, а также номер приемника, на который будет осуществлена передача. Сигнал принимался без ошибок именно тем приемником, адресный признак которого был использован при передаче.
Во второй серии экспериментальных сеансов передачи торсионных сигналов торсионный передатчик был размещен на пункте приема. Это соответствовало нулевой длине трассы связи и отсутствию поглощающих сред. В этом случае торсионные сигналы не отличались по интенсивности от сигналов проходящих через поглощающие среды. Это было свидетельством отсутствия поглощения торсионных сигналов различными средами. Именно это и предсказывалось теорией.
Сам факт передачи и приема торсионного сигнала был столь же значим, как и первые опыты А.С. Попова и Г. Маркони для всего дальнейшего развития радиосвязи. Успешно выполненные эксперименты означали революцию, начало новой эпохи в задачах передачи информации. С их помощью была продемонстрирована возможность дистантной передачи торсионной информации, а также передачи торсионных сигналов через поглощающие среды без ослабления при малых мощностях энергопотребления передатчика (30 мВт), которое было необходимо лишь для формирования торсионного сигнала.
В дальнейшем техника приема торсионных сигналов получила интенсивное развитие. Первые чисто технические приемники торсионных волн независимо друг от друга были созданы разными авторами.
В торсионных приемниках А. В, Боброва преобразование торсионных волн в электрические сигналы осуществлялось на двойных электрических слоях. В качестве двойных электрических слоев использовались системы жидкость-металл или полупроводниковые переходы. В работах А.В. Боброва впервые использовалась корреляционная обработка принимаемого торсионного сигнала в скользящем статистическом окне. На рис. 8 приведены эпюры торсионных сигналов на выходе пяти приемников (а - д) и их взаимокорреляционной обработки (е). На выходе коррелятора отношение S/N было больше 50 [28].
В качестве преобразователей торсионных волн в электрические в приемниках Г.Н. Дульнева использовались переходы металл-металл и оптоволоконные системы [29, 30]. Нетрудно видеть (рис. 9), что даже первичный сигнал без обработки имеет отношение S/N > 3. В исследованиях Г.Н. Дульнева впервые был экспериментально установлен предсказанный теоретически эффект спинового насыщения неравновесных сред при действии на эти среды торсионных излучений. Этот эффект насыщения приводит к тому, что сигнал на выходе торсионного приемника в процессе действия аксиального торсионного поля постепенно падает до нуля. Однако этот отрицательный эффект оказалось возможным преодолеть довольно простыми способами.
В приемниках Е.Г. Бондаренко для преобразования торсионных волн в электрический сигнал впервые использовались переходы на пленках, а также устройства такого преобразования с внешним физическим возбуждением. По всей видимости, первые системы регистрации торсионных излучений были созданы еще в начале века Н.М. Мышкиным в России [31] и Т. Иеронимусом в США [32], однако отсутствие понимания авторами физической природы регистрируемых излучений не позволило им оценить значимость этих работ.
За исключением экспериментов 1986 года по передаче информации по торсионным каналам связи все последующие работы выполнялись с использованием унифицированного торсионного передатчика, внешний вид которого показан на рис. 10 (габаритные размеры 500х500х400 мм, масса 4,5 кг). Этот передатчик позволяет перестраивать несущую, регулировать интенсивность выходного сигнала, работать с любым видом модуляции.
Таким образом, обеспечивается совместимость радио- и проводной связи с торсионной, что отвечает, по крайней мере, идеологии семиуровневого протокола Р. Сибсера [33] в средствах и комплексах связи.
Заключение. Все исследования по торсионной связи ведутся в соответствии с программой "Торсионная связь", которая реализуется Международным институтом теоретической и прикладной физики Российской Академии естественных наук, Межотраслевым научно-техническим центром венчурных нетрадиционных технологий (МНТЦ ВЕНТ). Работает сложившаяся кооперация организаций-соисполнителей. В настоящее время имеются экспериментальные образцы приемо-передающего комплекса торсионной связи, который создавался как базовый для решения разных задач передачи информации, связи, телеметрии, управления, навигации и локации.
«««Назад | Оглавление | Каталог библиотеки | Далее»»»
| ||||||||