«««Назад | Оглавление | Каталог библиотеки | Далее»»»

прочитаноне прочитано
Прочитано: 68%


         В системе наведения на цель предполагается использовать РЛС с рабочей частотой 35 ГГц и параболической антенной диаметром 1,2 м. По расчетам специалистов, дальность поражения целей пучковым оружием будет обеспечивать надежную защиту надводных кораблей от атакующих ПКР (рис. 3.46).

Рис. 3.46


         Многие проблемы, связанные с распространением пучков заряженных частиц в атмосфере, находятся в начальной стадии изучения. Например, эксперименты показали, что энергия, теряемая частицами, будет нагревать воздух в непосредственной близости от пучка. Это приводит к ионизации воздуха вокруг него и созданию огромного числа положительно заряженных атомов и свободных электронов. Согласно закону Кулона, одноименно заряженные частицы (т.е. электроны в пучке) отталкиваются, чему в большой степени "помогает" ионизированный слой положительно заряженных атомов вокруг пучка. В результате длинные пучки запутываются и складываются кольцом, а иногда полностью разрушаются. (В космическом вакууме, согласно приведенным доводам, пучок электронов сразу рассеется).
         Сохранение энергии и направленности пучка предполагается обеспечить предварительным "пробиванием" канала с разреженным воздухом в атмосфере посредством лазерного луча. Так, ученые фирмы "Сандиа" использовали для этого мощные ультрафиолетовые лазеры (рис. 3.47).

Рис. 3.47


         Испытания проводились в камере длиной 1,5 м. В эксперименте была достигнута стабильность пучка, а КПД переноса (отношение тока на выходе к входному току) составил 80%. Диаметр электронного пучка напряжением 1,5 MB изменялся в пределах от 0,3 до 6,0 см. Специалисты фирмы полагают, что значение КПД будет постоянным при распространении пучка на большие расстояния. Именно такой способ создания канала для распространения пучка электронов предполагается применять при защите авианосцев от атакующих ПКР (рис. 3.48).

Рис. 3.48


         Подробное описание программы ВМС США по созданию пучкового оружия не случайно. Все перечисленные проблемы характерны для этого "экзотического" оружия, расположенного как на Земле, так и в космосе. Разрабатываемое оружие для эшелонированной системы ПРО с элементами космического базирования может использовать в генерируемых пучках частицы двух типов - заряженные и нейтральные. Из-за большой массы ускорителя электронов пучковое оружие первого типа, вероятнее всего, может быть только наземного или морского базирования. При его размещении, например, в районах дислокации стартовых шахт МБР оно должно обеспечивать уничтожение атакующих боеголовок противника на дальности от объекта до 5 км.
         Ввиду кулоновского отталкивания заряженных частиц и искривления их траектории полета магнитным полем Земли в космосе может использоваться только пучковое оружие второго типа. Главная трудность создания такого оружия - расходимость нейтральных частиц (в частности, атомов водорода) по мере удаления их от ускорителя. Например, пучок нейтральных атомов водорода с диаметром на выходе ускорителя 1,0 см при распространении в космосе на дальности 1000 км будет иметь диаметр 20 м. Даже при создании очень высоких первоначальных энергий плотность энергии на цели при таком диаметре явно недостаточна для ее поражения. По оценкам специалистов, для разрушения конструкции МБР плотность энергии на цели должна составлять 1-10 кДж/см2,а для выведения из строя электронной аппаратуры ракеты - 0,1-100 кДж/см2. Поэтому ключевыми моментами создания нового типа космического оружия являются создание ускорителей с необходимой мощностью (яркостью) и расходимостью выходного пучка частиц, разработка источников питания и накопителей энергии для этих ускорителей, а также систем наведения и удержания на цели остронаправленных пучков нейтральных частиц.
         Эффективно ускорить можно только пучок заряженных частиц, так как нейтральные атомы практически не поддаются воздействию электромагнитного поля. Последнее создается, как правило, знакомым всем методом: обмотка, по которой пропущен электрический ток. Специфические особенности ускорителей таковы, что пучок заряженных частиц должен строго удерживаться в центре такой своеобразной катушки. При случайном касании обмотки он разрушит и ее, и часть ускорителя.
         В качестве нейтрального не случайно выбран атом водорода - самый легкий в природе и поэтому требующий для удержания в электромагнитном поле ускорителя и последующего разгона меньшего расхода энергии. (В настоящее время планируются исследования с пучками более тяжелых частиц, таких как атомы гелия и лития). Для придания ему электрического заряда нужно вначале искусственно ввести в структуру атома дополнительный электрон. Далее полученный отрицательный ион водорода Н разгоняется в электромагнитном поле ускорителя. На выходе из ускорителя лишний электрон необходимо "снять" с каждого иона, иначе пучок рассыплется в космосе по понятным причинам. Для этого применяют нейтрализаторы заряда, например, в виде специальной газовой мишени. При взаимодействии с газом лишний электрон, слабо связанный в структуре атома ввиду неуравновешенности положительных и отрицательных зарядов, быстро "слетает" со своей орбиты и на выходе ускорителя снова получается нейтральный атом водорода Ho. Следует отметить, что эффективность данного процесса перезарядки близка к 100%.
         К счастью, этот метод нейтрализации нельзя применять в космосе газ сразу улетучится в пространство. Поэтому были разработаны специальные нейтрализаторы из фольги, однако их КПД недостаточно высок, что существенно влияет на расходимость не совсем нейтральных атомов в пучке. Расчеты некоторых ученых показывают, что пучковое оружие пригодно для поражения целей на расстояниях не более 1000 км.

«««Назад | Оглавление | Каталог библиотеки | Далее»»»



 
Яндекс цитирования Locations of visitors to this page Rambler's Top100