«««Назад | Оглавление | Каталог библиотеки | Далее»»»

прочитаноне прочитано
Прочитано: 62%


         Так как рентгеновское излучение (или накачка) длится всего лишь 50 нс, вначале форма каждого стержня изменяется мало (хоть он уже и превратился в раскаленную плазму). В дальнейшем плазма прозрачная для рентгеновского излучения, начинает расширяться со скоростью около 50 км/с. Так, если первоначальный радиус стержня составляет доли миллиметра, то уже через 30 нс возникает индуцированное излучение длительностью всего 1 нс. Но за прошедшие 30 нс диаметр плазмы стержня успеет увеличиться до1,5 мм. КПД лазеров с ядерной накачкой пока не превышает нескольких процентов.
         По сообщениям прессы, одной из причин выступления Р.Рейгана с речью о "звездных войнах" стали результаты испытания рентгеновского лазера с ядерной накачкой. Первая встреча группы "О" с президентом Р. Рейганом произошла в январе1982 г. За ней последовали еще два визита в Белый дом, предшествующих речи 23 марта 1983 г. Сам Э. Теллер менее чем за один год до этой даты встречался с Рейганом четыре раза.
         Однако в самой Америке и во всем мире идея создания такого лазера была воспринята далеко неоднозначно. Поэтому в связи с многочисленными протестами по поводу вывода в космос любых ядерных устройств в Ливерморской лаборатории продолжаются интенсивные исследования по замене атомных бомб для зажигания термоядерного горючего в водородных устройствах новых лазерных БКС. Из всех известных источников энергии только лазеры могут справиться с этой задачей. На самой мощной в мире лабораторной лазерной установке "Новетт" и работал П.Хагелстайн. "Новетт" имела две лазерные линии, каждая длиной 150 м (если бы их вытянуть по нитке). Установка постоянно планово наращивается. Когда в соответствии с проектом заработают все 10 лазерных линий, установка стоимостью в 176 млн долларов будет называться "Нова".

Рис. 3.39


         Кстати, в этой же лаборатории работал и твердотельный лазер "Шива" (рис. 3.39), которым также хотели "поджечь" капсулу с термоядерной смесью. Сама капсула - стеклянный или пластмассовый баллончик - шедевр технического искусства: ее диаметр - от 100 до 200 мкм (что сравнимо с фокусом лазерного пучка), а толщина стенок - от 0,2 до 1 мкм! Для эксперимента баллончик наполнялся смесью газов дейтерия и трития под давлением 17,5 МПа (175 кгс/см2). Цель эксперимента - обжать в перекрестии мощных лазерных лучей мишень (миниатюрную копию водородной бомбы) так, чтобы началась реакция синтеза, т.е. произошел небольшой водородный взрыв. Мишень представляла собой гранулу из изотопов водорода размером менее десятой доли миллиметра в диаметре. Лучи лазеров должны были разогревать ее до солнечных температур и плотностей - тогда бы она и "загорелась". В случае удачи эксперимента такие миниатюрные водородные взрывы можно было бы с успехом использовать как для генераторов обычной электроэнергии в гражданской промышленности, так и для накачки стержней лазера боевой космической станции. Но законы физики не обойдешь. Удача может прийти, если за 10Е-9 с к грануле будет подведена энергия в несколько десятков килоджоулей, т.е. мощность лазеров должна измеряться десятками миллиардов киловатт. (Такая экспериментальная установка "Токомак-10" в 1970-х гг. была создана в нашей стране для "обкатки" принципов создания термоядерных электростанций будущего. В ней 10 мг смеси дейтерия и трития, заключенных в капсулу, равномерно "обжимались" лучами мощных лазерных установок. Температура получаемого при этом миниатюрного термоядерного взрыва составляла 90х10Е6 гр.С - вот оно избыточное тепло, которое и будет использовано для получения самой дешевой в мире электрической энергии).
         Однако американская администрация не собирается отказываться от намеченных планов. Напротив, усилия в деле создания грозного космического оружия в настоящее время значительно умножены. Разработку ядерных вооружений третьего поколения (к ним и относятся описываемые лазеры) осуществляют в лабораториях городов Лос-Аламос и Ливермор.
         Наибольших успехов в понимании процессов, происходящих при ядерной накачке, добились специалисты Ливерморской лаборатории, в которой работают 8000 человек, из них 1140 инженеров, 777 физиков, 286 химиков и материаловедов, 448 математиков и специалистов по компьютерной технике. В распоряжении лаборатории 800 млн долларов в год, но предполагают, что в ближайшее время эта сумма перевалит за 1 млрд долларов. Из них две пятых идут на развитие новых видов оружия, 300 млн долларов - на прямые исследования, связанные с СОИ. Конкретно известно, что в лаборатории в 1982 г. 70 ее сотрудников работали по программе рентгеновского лазера, на что выделялось ежегодно 15 млн долларов. В 1987 г. в этом направлении работало уже 187 человек, а ассигнования составляли 37 млн долларов в год.
         Американские специалисты предложили проект БКС с 50 рентгеновскими лазерами и одним ядерным источником накачки. Причем для каждого стержня рентгеновского лазера потребуется собственное прицельно-следящее устройство (возможно, с маломощным лазерным телескопом) для сопровождения цели.

Рис. 3.37


         Некоторые наши видные ученые считают, что расположение стержней, показанное на рис. 3.37, энергетически невыгодно. Предполагают, что стержни будут располагаться равномерно по окружности в корпусе БКС, что, по-видимому, несколько ограничит их характеристики по углам прицеливания (рис. 3.40).

Рис. 3.40


         Ожидается, что ввиду небольшого диаметра стержней и их относительно большой длины американские специалисты могут встретиться с некоторыми трудностями: коробление стержней от солнечного нагрева, компенсация остаточного механического движения (от поворотов БКС при прицеливании) и другими. Все это может направить стержни несколько в сторону от цели.

«««Назад | Оглавление | Каталог библиотеки | Далее»»»



 
Яндекс цитирования Locations of visitors to this page Rambler's Top100