«««Назад | Оглавление | Каталог библиотеки | Далее»»»

прочитаноне прочитано
Прочитано: 57%


         Вот почему так велика роль зеркал, фокусирующих излучение в точку на цели в зависимости от среды распространения луча и постоянно изменяющегося расстояния до нее. И снова бериллиевые зеркала занимают здесь не последнее место. Достигнуты определенные успехи и в создании деформируемых (адаптивных, т.е. приспосабливающихся) зеркал, причем сегменты зеркала были изготовлены в большом автоматизированном процессе полировки, что существенно облегчит в последующем серийное изготовление высокоточной оптики.
         Ведущие американские корпорации предлагают различные способы создания крупногабаритной оптики для лазерного оружия. Так, фирмы "Корнинг Гласс", "Перкин-Элмер", "Итек" и "Истман Кодак" предложили план создания зеркала диаметром 4 м. Научно-исследовательский центр фирмы "Юнайтид Текнолоджиз" предложил построить легкое зеркало диаметром 10 м. По расчетам, корпус зеркала может быть изготовлен на основе стеклянной матрицы, упрочненной графитовыми волокнами. В качестве отражающего покрытия предполагается применить осаждаемое посредством испарения кремний-органическое соединение. Расчетная стоимость постройки зеркала составляет 87,5 млн долларов (в ценах 1981 г.).
         Вы обратили внимание на гигантские диаметры зеркал? Изготовление таких зеркал - процесс трудоемкий и не допускающий ошибок. А ведь уменьшение диаметра зеркала позволяет уменьшить массу лазерного оружия. Например, уменьшение диаметра с 17 до 12 м позволяет снизить массу станции в два раза. На практике можно обеспечить даже большее снижение массы, поскольку зеркало меньшего диаметра может иметь меньшую толщину при достаточной механической прочности.
         Зачем же делают зеркала таких размеров? На этот вопрос сухо, но убедительно отвечает формула q = 1,22l/D, или, упрощая q = l/D.
         Здесь q - ширина (или угловой раствор) луча, рад; l - длина излучаемой волны, мкм; D - диаметр зеркала-излучателя, см.
         Изменить частоту генерации конкретного химического лазера практически невозможно. Поэтому единственный способ сузить луч - это увеличить диаметр зеркала. Вот почему в одном из проектов "абсолютно мирной" организации НАСА усилия ученых направлены на создание изменяющегося по форме (и, стало быть, изменяющего фокусное расстояние в зависимости от дальности до цели) складного гигантского зеркала (рис. 3.28).

Рис. 3.28


         Сверхзадача, стоящая перед американскими учеными, - уложить зеркало в грузовой отсек МТКК "Спейс Шаттл" при транспортировке его на орбиту и, конечно, обеспечить его раскрытие и длительную эксплуатацию в нелегких космических условиях. (Кстати, в 1978 г. в Советском Союзе был создан сегментный отражатель для астрофизического телескопа диаметром 1,2 м. По сообщениям прессы, это далеко не предел. Наши ученые, используя этот отражатель в качестве прототипа, надеются создать мирный телескоп и заглянуть с его помощью в глубь Галактики. Однако американские специалисты сразу высказали мысль о том, что такой "...крупный отражатель необходим для дальнобойных лазерных систем оружия космического базирования").
         Как следует из формулы, сузить луч можно с помощью лазера, работающего на меньшей длине волны, что наглядно демонстрирует диаграмма на рис. 3.29.

Рис. 3.29


         И еще одна закономерность квантовой энергетики - чем выше частота излучения (т.е. меньше длина волны), тем больше энергии передается (при одинаковой мощности лазера) в единицу времени. Вот почему американские ученые "бьются" над проблемой создания рентгеновского лазера.
         Успешно решаются проблемы автоматического изменения положения сегментов в площади всего зеркала, а также нанесения многослойных диэлектрических покрытий на них с высоким коэффициентом отражения, выдерживающих очень большие нагрузки излучения. По сообщениям печати, не вызывает сомнений и успешное решение проблемы охлаждения таких зеркал. В настоящее время прорабатываются вопросы соединения отдельных НF-лазеров в модули (блоки) для увеличения общей излучаемой мощности, а также компоновки всех элементов лазерного оружия на боевой космической станции.
         Химический лазер космического базирования "Альфа" в настоящее время находится в стадии окончательной сборки. Однако излучаемая им энергия при наземных испытаниях в большей вакуумной камере, имитирующей космическое пространство, пока на порядок (т.е. в 10 раз) меньше уровня энергии, необходимой для поражения МБР на активном участке траектории. Ожидается, что эти испытания подтвердят возможность увеличения энергии до уровня боевого применения.
         Безусловно, что из перспективных систем космического базирования оружия направленной энергии наилучшими характеристиками с точки зрения энергоемкости обладают химические лазеры. Если значение 100 Дж/г принять за необходимую величину для разрушения тонкостенных корпусов МБР (это и является удельным энерговыделением смеси Н2 и F2), то расчеты показывают, что на каждый выстрел уходит 2 т химического топлива. Для гарантированного уничтожения МБР следует произвести 2-3 выстрела. Так как масса БКС должна превышать массу химического топлива как минимум в 2 раза (а с учетом расхода топлива на удержание БКС в направлении цели - создание реактивного противомомента вращению во время истечения газов при выстреле - в 3 и более раз), то на каждый выстрел придется дополнительно 6 т массы боевой станции. Таким образом, для поражения только одной цели в космос необходимо вывести 12 т. Поэтому масса реальной БКС с химическим лазером на борту, рассчитанная на уничтожение множества целей, исчисляется тысячами тонн.

«««Назад | Оглавление | Каталог библиотеки | Далее»»»



 
Яндекс цитирования Locations of visitors to this page Rambler's Top100