«««Назад | Оглавление | Каталог библиотеки | Далее»»»

прочитаноне прочитано
Прочитано: 54%

"Экзотическая семейка"


         К видам оружия, за которыми уже прочно закрепилось название "экзотическое", относятся лазерное, пучковое, микроволновое и ЭМИ-оружие. Лазерное и пучковое создаются в рамках второго раздела программы СОИ оружия направленной энергии - DEW. В настоящее время разрабатываются по проекту SBL лазеры космического, а по проекту GBL - наземного базирования. Особое место в программе "звездных войн" занимает оружие направленной энергии с ядерной накачкой - лазеры, размещаемые в космосе. Они объединены проектом NDEW. Оружие на пучках нейтральных частиц, разрабатываемое по проекту NPB, может быть расположено как на Земле, так и в космосе. Похоже, что микроволновое и ЭМИ-оружие, рассчитанные на базирование в космосе, создаются в порядке "инициативы", поэтому не имеют собственных программ. Все перечисленные виды нового "экзотического" оружия могут быть распределены в любом из эшелонов новой ПРО (конечно, в зависимости от возможности его эффективного применения).
         В настоящее время в интересах создания перспективной системы ПРО исследуются несколько типов лазеров. Прежде чем описывать их конструкции и возможности, кратко напомним принципы действия простейших лазеров. (Laser это первые буквы английской фразы, в переводе на русский означающей усиление света с помощью вынужденного излучения).
         Кое-что из истории. В оптических квантовых генераторах (лазерах) используются законы взаимодействия излучения и вещества. Еще в 1915 г. Альберт Эйнштейн теоретически доказал, что при таком взаимодействии возникают: поглощение веществом квантов излучения (фотонов); спонтанное (самопроизвольное, неодновременное и независимое друг от друга) излучение квантов частицами вещества; индуцированное излучение, т.е. излучение квантов (фотонов) веществом, вызванное внешним излучением. И если первые два процесса нам хорошо знакомы из повседневной жизни (фосфор, светящийся ночью на стрелках часов, светящиеся гнилушки в лесу), то последний удалось реализовать только в 1960 г., когда в Америке на кристалле синтетического рубина Т.Мейманом был создан импульсный лазер, излучавший красный свет.
         Идеи, воплощенные в новом приборе, были разработаны многими учеными мира. Однако наиболее выдающихся результатов одновременно достигли советские ученые Н.Г. Басов и А.М. Прохоров и американский физик Ч. Таунс, которым академия наук Швеции в 1964 г. присудила Нобелевские премии по физике.
         Кое-что из теории. Принцип действия оптических квантовых генераторов, как и все гениальное, довольно прост. Известно, что атом вещества состоит из множества частиц: положительно заряженного ядра (протонов и нейтронов) и вращающихся вокруг него на различно удаленных орбитах отрицательно заряженных электронов. В целом положительный заряд ядра уравновешивается отрицательными зарядами электронов, поэтому обычный атом нейтрален. Известно также, что чем дальше удалена орбита электрона от ядра, тем большим запасом энергии обладает этот электрон( вспомните описание преимущества в энергии тела, находящегося на экваторе Земли и на полюсах).
         При сообщении атому энергии извне, например, при облучении его светом, электроны могут переходить на другие, более удаленные от ядра орбиты. Естественно, их энергия станет больше. Иначе можно сказать, что под воздействием внешних сил (источника накачки, например, при протекании электрического тока или при облучении внешним источником света) электроны переходят на более высокие энергетические уровни. Переход электрона с близкой орбиты на более удаленную сопровождается поглощением кванта энергии. Наоборот, возвращение его с удаленной орбиты на более близкую (или свою "родную") сопровождается выделением одного кванта энергии излучения, частота которого определяется радиусами тех двух орбит, между которыми совершается переход электрона (рис. 3.20).

Рис. 3.20


         Жизнь иона на верхнем уровне коротка - всего лишь 2Е-7 с. Особенность лазерного вещества, в котором происходят описанные процессы, такова, что переход электрона с удаленной орбиты в исходное (основное) состояние происходит ступенчато, причем электроны "скапливаются" на более длительное время (2Е-3 с) на промежуточном энергетическом уровне. Переход электрона на основной (невозбужденный) уровень происходит под действием внешнего излучения и сопровождается индуцированным излучением: мы имеем усиление света (рис. 3.21).

Рис. 3.21

Рис. 3.22


         Твердотельный лазер (рис. 3.22) на первый взгляд, устроен совсем просто. Активным (или рабочим) телом, в котором происходят описанные процессы, является бесцветный кристалл окиси алюминия - корунд Al2O3. При выращивании его некоторое число ионов алюминия замещается ионами хрома (до 0,07% массы) и корунд превращается в рубин - кристалл розовато-красного цвета. Именно ионы хрома и являются стимуляторами генерации света, возникающего в рубиновом стержне. Особенности оптических квантовых генераторов (ОКГ) состоят в том, что частота, поляризация и направление излучаемых фотонов в точности соответствуют тем же параметрам фотонов внешнего излучения. Это достигается резонансной системой, состоящей из зеркал (или отполированных, а иногда и посеребренных поверхностей) на концах стержня. Они служат для того, чтобы часть излучаемой световой энергии все время оставалась внутри активного вещества, вызывая вынужденное излучение все новыми и новыми атомами. Одно из зеркал полупрозрачно. Часть световой энергии пройдет через него и выйдет долгожданным лучом лазера.

«««Назад | Оглавление | Каталог библиотеки | Далее»»»



 
Яндекс цитирования Locations of visitors to this page Rambler's Top100