«««Назад | Оглавление | Каталог библиотеки | Далее»»»
Прочитано: 10% |
Довольно долго я никак не мог понять, как с подобным уровнем знаний все эти молодые люди сумели сдать БАК, задачи в котором, как правило, составлены на вполне приличном уровне и решить которые (как мне казалось) можно лишь обладая вполне приличными знаниями. Теперь я знаю ответ на этот вопрос. Дело в том, что практически все задачи, предлагаемые на БАКе, можно решить с помощью хорошего калькулятора - они сейчас очень умные, эти современные калькуляторы: и любое алгебраическое преобразование сделают, и производную функции найдут, и график её нарисуют. При этом пользоваться калькулятором при сдаче БАКа официально разрешено. А уж что-что, а быстро и в правильном порядке нажимать на кнопочки современные молодые люди учатся очень лихо. Одна беда - нет-нет да и ошибешься, в спешке не ту кнопочку нажмешь, и тогда получается конфуз.
Впрочем, "конфуз" - это с моей, старомодной, точки зрения, а по их, современному, мнению - просто ошибка, ну что поделаешь, бывает. К примеру, один мой студент что-то там не так нажал, и у него получился радиус планеты Земля равным 10 миллиметрам. А, к несчастью, в школе его не научили (или он просто не запомнил), какого размера наша планета, поэтому полученные им 10 миллиметров его совершенно не смутили. И лишь когда я сказал, что его ответ неправильный, он стал искать ошибку. Точнее, он просто начал снова нажимать на кнопочки, но только теперь делал это более тщательно и в результате со второй попытки получил правильный ответ. Это был старательный студент, но ему было абсолютно "до лампочки", какой там радиус у Земли: 10 миллиметров или 6.400 километров, - сколько скажут, столько и будет. Только не подумайте, что проблему можно решить, запретив калькуляторы: в этом случае БАК просто никто не сдаст, дети после школы вынуждены будут вместо учебы в университетах искать работу, и одновременно без работы останется целая армия университетских профессоров - в общем, получится страшный социальный взрыв. Так что калькуляторы трогать не стоит, тем более что в большинстве случаев ученики правильно нажимают на кнопочки.
Теперь о том, как, собственно, учат математике и физике в университете. Что касается математики, то под этой вывеской в осеннем семестре изучаются три темы: тригонометрия (синусы, косинусы и т.д.), производные функций и несколько интегралов от стандартных функций - в общем, всё то, что и так нужно было знать, чтобы сдать БАК. Но в университете, как это часто бывает, учат всё сначала, чтобы научить наконец "по-настоящему".
Что касается тригонометрии, то её изучение сводится к заучиванию таблицы значений синуса, косинуса и тангенса для стандартных углов 0, 30, 45, 60 и 90 градусов, а также нескольких стандартных соотношений между этими функциями. Старательные студенты, которых в действительности не так уж мало, всё это знают и так. Однако вот ведь какая закавыка, я каждый год упорно задаю своим ученикам один и тот же вопрос: кто может объяснить, почему синус 30 градусов равен 1/2? Я преподаю уже пять лет, и каждый год у меня около пятидесяти учеников; так вот, из двухсот пятидесяти моих учеников за всё время на этот вопрос мне не ответил ни один человек. Более того, по их мнению, сам вопрос лишён смысла: то, чему равны все эти синусы и косинусы (также, впрочем, как и все остальные знания, которыми их пичкали в школе, а теперь продолжают пичкать в университете), - это просто некая данность, которую нужно запомнить. И вот каждый год я, как последний зануда, пытаюсь их в этом разубеждать, пытаюсь рассказывать что откуда берется, какое отношение всё это имеет к миру, в котором мы живем, тужусь изо всех сил рассказывать так, чтобы было интересно, а они смотрят на меня, как на придурка, и терпеливо ждут, когда же я, наконец, угомонюсь и сообщу им что, собственно, нужно заучить на память. Своим большим успехом я считаю, если к концу семестра один или два человека из группы раз-другой зададут мне вопрос "почему?". Но достичь этого мне удаётся не каждый год...
Теперь производная функции. Милые эксперты, не пугайтесь - никакой теоремы Коши, никакого "пусть задано эпсилон больше нуля..." тут не будет. Когда я только начинал работать в университете, некоторое время ходил на занятия моих коллег - других преподавателей, чтобы понять что к чему. И таким образом я обнаружил, что на самом деле всё намного-намного проще, чем нас когда-то учили. Спешу поделиться своим открытием: производная функции - это штрих, который ставится справа вверху от обозначения функции. Ей-богу, я не шучу - прямо так вот и учат. Нет, разумеется, это далеко не всё: требуется заучить свод правил, что произойдёт, если штрих поставить у произведения функций и т.п.; выучить табличку, в которой изображено, что этот самый штрих производит со стандартными элементарными функциями, а также запомнить, что если результат этих магических операций оказался положительным, значит, функция растёт, а если отрицательным - убывает. Только и делов. С интегрированием точно такая же история: интеграл - это такая вот вертикальная карлючка, которая ставится перед функцией, затем даются правила обращения с этой самой карлючкой и отдельное сообщение: результат интегрирования - это площадь под кривой (и на кой им нужна эта площадь?..)
«««Назад | Оглавление | Каталог библиотеки | Далее»»»
| ||||||||