«««Назад | Оглавление | Каталог библиотеки | Далее»»»
Прочитано: 17% |
Разрабатываемая до недавнего времени термодинамика ограничивалась рассмотрением изолированных, замкнутых систем и областью явлений, близких к равновесию, систем, для которых соотношения между термодинамическими параметрами связаны линейными соотношениями: одинаковым изменениям независимой величины должны строго отвечать одинаковые изменения зависимой. В рамках этой термодинамики вопрос об упорядочивании, об организации структур не ставился, да и не мог быть поставлен.
Только около сорока лет назад некоторые физики в разных странах начали предпринимать попытки изучения неравновесных систем и неравновесных процессов. Наибольших успехов в создании новой термодинамики достигли Герман Хакен и "брюссельская школа" во главе с И.Р. Пригожиным, ставшие основоположниками нового научного направления, названного авторами соответственно "синергетикой" и "нелинейной термодинамикой неравновесных процессов". Далее я буду пользоваться термином Пригожина, сокращая его: "нелинейная термодинамика".
Известно, что в ходе обратимых, то есть идущих без изменения собственной энтропии системы процессов, могут образовываться равновесные структуры-устойчивые состояния, типичным примером которых является кристалл. Пригожий, исследовавший термодинамическими методами явления флуктуаций и устойчивости, поставил и решил задачу о возможности возникновения устойчивых структур, названных им "диссипативными", в условиях, далеких от равновесия, в нелинейной области, где на одинаковые приращения независимой переменной одна и та же функция может откликнуться по-разному, в зависимости от того, какому значению независимой переменной придается приращение. Неравновесное состояние системы можно, наверное, определить и как состояние динамическое, как состояние интенсивного обмена системы энергией и массой с окружающей средой.
Само существование упорядоченности за пределом устойчивости не является чем-то новым. Ярким примером этого класса явлений считается конвекционная неустойчивость Бенара или ячейка Бенара.
Опыт, демонстрирующий образование ячеек Бенара, элементарно прост: если в сковороде разогревать слой растительного масла, то через какое-то время жидкость разобьется на правильные сотовидные ячейки, то есть в открытой системе после подвода энергии образуется некоторая структура, возникает упорядочивание.
Ячейка Бенара совсем не уникальный пример возникновения упорядоченных структур за пределом устойчивости: в литературе описаны многочисленные периодические диссипативные процессы при протекании химических, электро- и биохимических реакций, которые являются примером временного упорядочивания.
В качестве еще одного примера можно указать на ставшую широко известной реакцию Белоусова-Жаботинского. В 1951 году Б. П. Белоусовым была сделана неудачная, к сожалению, попытка опубликования в одном из химических журналов статьи, где описывалась открытая им периодическая реакция. Статья эта была отклонена под тем предлогом, что, как известно, все химические реакции идут одним, единственно возможным путем - необратимо. Между тем в лаборатории у Белоусова происходило невероятное - прозрачная смесь нескольких реактивов начинала периодически менять цвет: красный менялся на синий, синий - на красный, до тех пор, пока не израсходовались все реагенты.
Анализ подобных явлений позволил сделать вывод о том, что неравновесные состояния системы, являющиеся, вообще говоря, признаком хаоса, могут стать причиной возникновения в ней порядка.
Классическая термодинамика до Пригожина рассматривала только процесс роста энтропии, разрушение первоначально заданной организации, порядка. Переход к анализу открытых неравновесных систем показал, что из хаоса может рождаться порядок - что и следует из теории биологической эволюции.
Ученые брюссельской школы не могли не заметить и не оценить всей грандиозности перспектив, которые открывала новая концепция.
Ведь в случае распространения теории нелинейной термодинамики на биологические объекты эта теория могла бы стать теорией, дающей шанс на понимание общности эволюции и физических, и биологических систем.
В начале семидесятых годов И.Р. Пригожин и П. Гленсдорф попытались математически сформулировать некоторый критерий, который бы прямо предсказывал условия создания форм, производства нового.
Выдвинутый Пригожиным и Гленсдорфом "критерий эволюции" претендовал на роль универсального термодинамического закона самоорганизации и эволюции любой открытой системы: физической, химической, биологической.
Однако попытки распространения методов нелинейной термодинамики на биологические системы не дали практически никаких зримых результатов. Причин тому можно назвать несколько. Прежде всего - это необыкновенная, по сравнению с такими, как, например, колебательная реакция Белоусова, сложность даже самых простых биологических объектов. Другая трудность заключается в том, что самоорганизация живого относится к качественно иному типу.
Если такие процессы, как зарождение атмосферных вихрей, образование промежуточных структур в химических реакторах и другие подобные процессы, не создают в системе качественно новых элементов, то образование и развитие больших протобелковых молекул в ходе химической эволюции, или образование видов в биологической - характеризуется появлением в системе новых качеств. Собственно говоря, появление новых качеств наблюдается и при фазовых переходах, и при работе лазера, но это процессы, несоизмеримые по сложности.
При описании процессов самоорганизации живого оказалось невозможным детальное описание, моделирование, строгая математическая формализация и расчет - все те методы, которые были использованы Пригожиным при разработке принципов нелинейной термодинамики. Но тем не менее выдвинутый И. Р. Пригожиным и Г. Хакеном принцип самоорганизации, уменьшения структурной энтропии, роста отрицательной энтропии - негэнтропии - в открытых неравновесных системах может быть признан одним из основных для понимания сущности жизни.
«««Назад | Оглавление | Каталог библиотеки | Далее»»»
| ||||||||