«««Назад | Оглавление | Каталог библиотеки | Далее»»»

прочитаноне прочитано
Прочитано: 5%


         Мы отложим анализ первого и шестого пунктов, поскольку отмеченные в них факты содержатся в книге Курта Керама "Боги, гробницы, ученые" - превосходной книге, должен отметить, но не лишенной многих недостатков. До Керама мы еще доберемся, а пока проанализируем пункт второй, касающийся числа "пи".
         Вас не удивляет, что египтяне умели производить папирус, материал для письма, более долговечный, чем бумага, и доживший до наших времен? Что у них была довольно высокоразвитая медицина - они знали о многих болезнях, некоторые лечили и даже делали операции? (О медицинских познаниях египтян нам известно, в частности, из папируса Эберса - примерно 1500 лет до н.э. Я ознакомился с его английским переводом и свидетельствую, что это поразительный документ. Отрывок из данного папируса, касающийся сахарного диабета, приведен в книге Х.Астамировой, М.Ахманова "Большая энциклопедия диабетика". Вообще же с древнеегипетскими загадками и тайнами я познакомился в тот период, когда писал роман "Страж фараона" и пользовался консультациями известного египтолога с Восточного факультета Петербургского госуниверситета. Египтяне действительно умели так много! Но еще поразительней то, чего они не умели. Так, их достижения в математике весьма скромны - они не ведали привычных нам алгоритмов деления и умножения, знали только два математических действия, сложение и вычитание, а также простые дроби типа 1/2, 1/3, 1/4 и так далее. Умножение заменялось многократным сложением, деление - примерным подбором ответа и проверкой с помощью многократного сложения, подходит ли этот ответ. Действия, которые покажутся элементарными школьнику наших дней, занимали у египетских "специалистов" долгие часы. Если что и достойно восхищения, так их трудолюбие).
         Что те же египтяне и жители Шумера производили медные орудия, ткани, глиняные горшки, строили гигантские ирригационные сооружения? А ведь это весьма сложные технологические процессы! Попробуйте-ка выплавить медь и отковать из нее клинок или сделать глиняный кувшин - уверяю вас, такая задача под силу только профессионалу! Гораздо легче определить приближенное значение числа "пи". Для этого нам необходимы два колышка, веревка и ножик, чтобы эту веревку разрезать. Выберем ровное место, воткнем один колышек в почву, привяжем к нему веревкой другой и, натягивая веревку, опишем концом этого колышка окружность на земле. Уложим вдоль окружности еще один кусок веревки и обрежем его; длина этого куска равна длине окружности. Другим куском веревки измерим диаметр, а затем сравним длину обоих кусков. Мы выясним, что большой кусок (длина окружности) превосходит малый (диаметр) в три целых и одну седьмую раза, что является неплохим приближением для трансцендентного числа "пи" = 3,1415... Выполнить описанную мной работу гораздо легче, чем сделать глиняный горшок - тем более ученым жрецам, служителям культа.
         Что касается Лудольфа ван Цейлена (1540-1610), то он вычислил число "пи" с тридцатью пятью десятичными знаками не путем примитивных измерений, а с помощью весьма сложной математической техники, использующей описанные и вписанные правильные многоугольники со все возрастающим числом сторон. А вскоре, в 1593 г., Виет нашел выражение для "пи" в виде бесконечного произведения тригонометрических функций. Вот такого в Египте и Двуречье точно не умели! Так что оставим каждому веку свои достижения и не будем считать египетских и шумерских жрецов и писцов ни гениями, ни кретинами, ни наследниками знаний Атлантиды.
         Обратимся к пункту третьему и прежде всего заметим, что теоремы не открывают, а доказывают. Шумерским жрецам действительно была известна теорема Пифагора - как практическое правило, которым удобно пользоваться при различных вычислениях. Однако эту теорему в Шумере не доказали. Там вообще ничего не доказывали, поскольку хоть математики Двуречья были искуснее египетских, но метод математических доказательств не изобрели. А Пифагор - вернее, ученые пифагорейской школы таким методом владели, и это их огромное достижение сравнительно с шумерскими предшественниками. Недаром они жили тысячу лет спустя!
         Пункт четвертый: "жрецы... решали... квадратные уравнения с несколькими неизвестными". Это бред! Квадратное уравнение с двумя неизвестными имеет бесконечное множество решений. В Двуречье умели решать системы из двух уравнений, где одно уравнение было простым квадратным, а второе - простым линейным, так что элементарной подстановкой задача сводилась к решению полного квадратного уравнения (разумеется, с одним неизвестным). Такое уравнение разрешимо в радикалах - то есть его корни могут быть выражены через коэффициенты. Вывод общей формулы для корней квадратного уравнения ныне дается в восьмом или девятом классе средней школы, но в Двуречье он не был известен; как уже говорилось, там не имели понятия о математических выводах и доказательствах. Существовала процедура действий, приводящих к верному результату, и установленная не с помощью логических рассуждений, а, скорее всего, эмпирическим (то есть опытным) путем.
         Пункт пятый: "то, что они делали, надолго опережало как практические потребности жизни, так и общий уровень знаний". Отнюдь не опережало! Потребность в решении квадратных уравнений и задач на сложные проценты диктовалась именно практикой, иначе любой из шумерских царей развесил бы бездельников-жрецов на городских стенах кверху ногами. Ведь в городах-государствах Двуречья собирали налоги, кормили отряды воинов, торговали и занимались ростовщичеством! Как же тут обойтись без сложных процентов? А это, между прочим, приводит к показательным уравнениям, которые решались приближенно, с помощью подбора решения. Примеры таких задач, содержавшихся на глиняных табличках, даны в "Кратком очерке истории математики" Дирка Стройка (ист. 7), и некоторые проблемы формулируются удивительно по-современному: за какое время удвоится сумма денег, ссуженная под двадцать годовых процентов?

«««Назад | Оглавление | Каталог библиотеки | Далее»»»



 
Яндекс цитирования Locations of visitors to this page Rambler's Top100